
Grammar-based language
technology for the Sámi languages

Trond Trosterud
This talk presents the Sámi language technology project in some detail. Often, language
technology projects are either commercial (and hence closed for inspection), or they are
small and run with no explicit infrastructure. This is our contribution to a concrete
discussion on how to run medium-scale, decentralised, open-source language technology
projects for minority languages.

Introduction

In this talk I present a practical framework for grammar-based language
technology for minority languages in some detail. These matters are seldom the
topic of discussion; we tend to go directly to the scientific results. But in order
to obtain these results, one needs a good project infrastructure. Moreover, for
minority languages the bottleneck is often the lack of human expertise, persons
with knowledge both of the language, of linguistics, and of language technology.
In such situations we need to organise the work in order to facilitate cooperation
and to avoid duplication of the work. Although our model hardly is the ultimate
one, it is the result of an accumulation of experience from different types of
projects; commercial, academic and grass root open-source, and we hereby
present it as a possible source of inspiration.

The Sámi languages make up one of the seven subbranches of the Uralic
language family, Finnish and Hungarian being the most well known members of
two of the other subbranches. Typologically, the Sámi languages have many
properties in common with the other Uralic languages, but several non-segmental
morphological processes have entered the languages as well. There are 6 Sámi
literary languages, North, Lule, South, Kildin, Skolt and Inari Sámi. All of them
are written with the Latin alphabet (including several additional letters) except
Kildin Sámi, which is written with the Cyrillic alphabet.

Prior to our project, the main focus within Sámi computing had been the
localisation issue. 4 of the 6 Sámi languages have letters not found in the Latin 1
(or Latin 2) code table. At present, this issue is more or less solved, and North
Sámi is the language with fewest speakers that at the same time is localised, out
of the box, on all 3 major operating systems. No other language technology
applications existed prior to our work.

Project status quo, goals and resources

The work is organised in two projects, with slightly different goals. It started
out as a university-based project, with a goal of building a morphological parser
and disambiguator for North, Lule and South Sámi, in order to use them for
scientific purposes: Making a tagged corpus with a web-based graphical
interface, and using it for syntactic, morphological and lexical research,
publishing reverse dictionaries, etc. In 2003 the Norwegian Sámi parliament
wanted advice on how to build a Sámi spellchecker. They saw the construction of
this tool as vital for the use of North Sámi as an administrative language. As a

result of this, we are now 3 persons working on the University project and 4 ½
people working on the Sámi parliament project. The projects will run with the
present financing for another 2 years.

Status quo is that we have a parser with a recall of 80 - 93 % on grammatical
analysis of words in running text (modulo genre), and we disambiguate the
morphological output with a recall of 99 % and a precision of 93 %, and slightly
worse outcome for syntactic analysis. The parsers behind these results contain 99
morphophonological rules, 573 continuation lexica and 1855 disambiguation
rules.

The figures below shows output for the morphological parser of the sentence
Mii háliidit muitalit dan birra “We would like to tell about it”.

Figure 1 Morphological analysis of a Sámi sentence

Figure 2 shows the same sentence in disambiguated mode. Here, all irrelevant
morphological readings are removed, and in addition, syntactic information has
been added, on the basis of the information given by the morphological
disambiguator.

Figure 2 Disambiguated version of the same sentence

As for the speller project, we have an alpha version, made with the aspell

utility. The parser has been put to use in interactive pedagogical programs, and
there are concrete plans for making a Sámi text-to-speech application.

Choice of approach

Grammatical vs. statistical approach
We use a grammar-based, rather than a statistical approach (proponents of

the statistical approach often refer to this dichotomy as a choice between a
“symbolic” and a “stochastic” approach), which means that our parsers rely on a
set of grammar-based, manually written rules, that can be inspected and edited
by the user. There are several reasons for our choice:

1. We think some of the prerequisites for good results with the
statistical approach are not present in the Sámi case.

2. We want our work to produce grammatical insight, not only
functioning programs.

3. Overall, we think the grammatical approach is better.
Ad 1: Good achievements with a statistical approach require both large

corpora, and a relative simple morphological structure (low wordform / lemma
ratio), as is the situation for English. Sámi and many other languages have a rich
morphological structure and a paucity of corpus resources, whereas the basic
grammatical structure of the languages is reasonably well understood.

Ad 2: Our work is a joint academic and practical project. Work on minority
languages will typically be carried out as cooperation projects between research
institutions and in-group individuals or organisations devoted to the
strengthening of the languages in question. Whereas private companies will look
at the ratio of income to development cost, and care less about the

developmental philosophy, it is important for research institutions to work with
systems that are not ``black boxes'', but that are able to give insight into the
language beyond merely producing a tagger or a synthetic voice.

Ad 3: We are convinced that grammar-based approaches to both parsing and
machine translation are superior to the statistical ones. Studies comparing the
two approaches, such as Chanod and Tapanainen 1994, support this conclusion.

This does not mean that we rule out statistical approaches. In many cases,
the best results will be achieved by combining grammatical and statistical
approaches. A particularly promising approach is the use of weighted automata,
where frequency considerations are incorporated into the arcs of the
transducers. Use of standalone statistical methods we would like to apply after
the grammatical analysis must give in. In other words, the cooperation should be
ruled by the motto don’t guess if you know.

Choosing between a top-down and a bottom-up approach
Within grammatical approaches to parsing, there are two main approaches,

which we may brand top-down and bottom-up. The top-down approaches try to
map a possible sentence structure upon the sentence, as a possible outcome of
applying generative rules on an initial S node. If successful, the result is a
syntactic tree displaying the hierarchical structure of the sentence in question.

The bottom-up approach, on the contrary, takes the incoming wordforms and
the set of their possible readings as input. Then they disambiguate multiple
readings based upon context, and build structure.

We chose a bottom-up approach because it was robust, it was able to analyse
any input, and it gave good results.

Linguistic tools

The tools behind our morphological analyser
For our morphological analyser, we build finite-state transducers, and we use

the finite-state tools provided by Xerox, and documented in Beesley and
Karttunen 2003. For morphophonological analysis, there is a choice of using the
parallel, two-level morphology model, dating back to Koskenniemi 1983, with
twolc, or the sequential model, presented in Karttunen et al.1992, with xfst.
Xerox’ advice is to use the latter, we use the former, but we see this mainly as a
matter of taste. The morphophonological and lexical tools are composed into a
single transducer during compilation, as described in the literature. Cf. the
figure below.

Figure 3 A schematic overview of the lexicon and morphophonology of the
parser.

A more serious question is the choice of Xerox tools vs. open source tools. In

our project, we have no wish to modify the source code of the rule compilers
themselves, but we notice that all binary files compiled by the xfst, lexc and
twolc compilers are copyrighted property of the Xerox Corporation. Is it as if you
have written your own C program, but the compiled version of your program is
copyright-owned by Kernighan and Ritchie, the authors of the C compiler. This
much being said, it has been a pleasure working with Xerox, they have been very
helpful, and as they see no commercial potential in Sámi, we notice no practical
consequences of the fact that all our parsers are marked “Copyright Xerox
corporation”.

 The tools behind our disambiguator

For disambiguating the output of the morphological transducer, we use
constraint grammar. This is a framework dating back to Karlsson 1990, and the
leading idea is that for each wordform of the output, the disambiguator looks at
the context, and removes any reading that does not fit that context. The last
reading can never be removed, and in the successful case, only the appropriate
reading is left. The Brill tagger can be seen as a machine-learning variety of the
constraint grammar parser.

There are several versions of the constraint grammar compilers. The original
one was written in Lisp by Fred Karlsson. Later, Pasi Tapanainen wrote a
compiler in C, called CG-2, this version may be licensed from
www.connexor.com. We use an open source version of this compiler, made by
Eckhard Bick. It must be stressed that the debugging facility of the Connexor
compiler is superior to its competitors.

The optimal implementation would probably be to write the constraint
grammar as a finite state transducer, as suggested in the Finite State
Intersection Grammar framework. So far, nothing has come out of this work.

One-base, multi-purpose parsers
Working with minority languages, the lack of human resources is often as hard

a problem as the lack of financial ones. With this in mind, avoiding duplicate
work becomes crucial. The most time-consuming task in any linguistic project is
to build and maintain a lexicon, be it in the form of a paper dictionary, a

semantic wordnet, or the lexicon for a parser. The optimal solution is to keep
only one version of the lexicon, and to extract relevant information from it, in
order to automatically build paper and electronic dictionaries, orthographical
wordlists, or parsers. In our project, this has not yet been implemented, but for
new languages we try out prototype models to make this work for new languages.
Our plan is to use xml as text storage, and various scripts to extract the relevant
lexicon versions.

It goes without saying that we use one and the same source for morphological
transducer for linguistic analysis, pedagogical programs, spellers, etc. These
applications often need slightly different transducers, in which case we mark the
source code so that it is possible to compile different transducers from the same
source code. For the academic project we make a tolerant parser, that analyses
as much of the attested variation as possible. The spellchecker has a totally
different goal, here we build a stricter version, that only accepts the forms
codified in the accepted standard. This approach is even more appropriate as we
are the only language technology project working on Sámi. Any further
application will build upon our work, and our goal is to make it flexible enough to
make that possible.

Infrastructure

Computer platform

Our project is run on Linux and Mac OS X (Unix). The Xerox tools come in a
Windows version also, but the lack of a descent command-line environment and
automatic routines for compiling makes it unpractical to use Windows. The cvs
base is set up on a central Linux machine; otherwise we use portable
Macintoshes, both because they have a nice interface, and because they offer
programs that make it easier to work from different locations, such as the
SubEthaEdit program mentioned below.

Character set and encoding

Most commercially interesting languages are covered by one of the 8-bit ISO
standards. Very many minority languages fall outside of this domain. It is our
experience that it is both possible and desirable to use UTF-8 (multi-byte
Unicode) in our source code, i.e. to build the parser around the actual
orthography of the language in question, rather than to construct some auxiliary
ASCII representation. With the latest versions of the Linux and Unix operative
systems and shells, we have access to tools that are UTF-8 aware, and although
it takes some extra effort to tune the development tools to multi-byte input, the
advantage is a more readable source code (with correct letters instead of
digraphs) and an easier input/output interface, as UTF-8 now is the de facto
standard for digital publishing.

There is one setting where one could consider using a transliteration, and that
is for languages using syllabic scripts, such as Inuktitut and Cherokee. If you have
a rule saying that a final vowel is changed in a certain environment, a syllabic
script will not give you any single vowel symbol to change, rather that changing,
say a to e in a certain context, your rule must change syllabic symbol BA to BE,
DA to DE, FA to FE, GA to GE, etc. It still may be better to use the original
orthography, though; each case requires its own evaluation process.

Directory structure

We have put some effort in finding a good directory structure for our files.
The philosophy as as follows: Different types of files are kept separate. The
source files have their own directory, binary and developer files are kept
separate.

Figure 4 Directory structure

Version control

All our source and documentation files are under version control using cvs.
This means that the original files are stored on our central computer (with
backup routines), and that each co-worker checks out a local copy that becomes
his or her version to work on. After editing, the changed files are then copied
back, or checked in to the central repository. For each check-in, we write a short
note telling what we have done. We also have set up a forwarding routine, so
that all co-workers get a copy of all cvs log messages via mail.

Figure 5 Quote from cvs log

Using cvs (or some other version control system) is self-evident to any

programmer, and it may be seen as quite embarrassing that such a trivial fact is
even mentioned here. It is our experience that the use of version control systems
is by no means standard within academic projects, and we strongly urge anyone
not using such tools to consider doing so. Backup routines become easier, and
when growing from one-person projects to large projects, it is a prerequisite for
being able to have several co-workers collaborating on the same source files. We
will even recommend cvs for one-person projects. Using cvs, it is easier to
document what has been done earlier, and to go back in previous versions to find
out when a particular error may have crept in.

Building with make
Another self-evident programmer’s tool is the use of makefiles, via the

program make. In its basic form, make functions like a script, and saves the work
of typing the same long set of compilation commands again and again. With
several source files, it becomes important to know whether one should compile
or not. make keeps track of the age of the different files, and compiles a new set
of binary files only when the source files are newer then the target binary files.
The picture shows the dependencies between the different source and binary
files.

Figure 6 Dependencies in the project’s Makefile

Tracing bugs

As the project grows, so does the number of people debugging it, and thereby
the number of bugs and errors. We have designed an error database, in our case
Bugzilla, which keeps track of the errors. The database can be found at (the
temporal) address http://129.242.176.176/giellatekno/bugzilla/, the stable url
will be http://giellatekno.uit.no/bugzilla/. People interested may visit the url.
There is a requirement that you log in with an e-mail account and (preferably) a
name, but otherwise the bug database is open for inspection.

Internal communication in a decentralised project

We have co-workers in Tromsø, Kautokeino and Helsinki. Crucial for the
project’s progress is the possibility of coordinating our work. For that, we have
the following means:

• We have made a project-internal newsgroup. Discussion is carried out
there rather in personal emails, since more than one person may have

something to say on the issue, and since it is easier to go back to
earlier discussions using the newsgroup format

• For simultaneous editing of the same document, be it source code or
a meeting memo, we use a program called SubEthaEdit
(http://www.codingmonkeys.de/subethaedit/ - only for Mac OS X).
This program makes it possible for several users to edit the same file
at the same time. Combined with telephone (or voice chat!), we may
discuss complicated matters on a common rule set while editing
together, even though we sit in different countries.

• For informal discussions, we use chat programs. The built-in Mac OS X
chat application iChat also facilitates audio and video chats with
decent to high quality of the video and sound (mainly restricted by
the available bandwidth)

• We have meetings over the phone, although we planned to conduct
them using iChat (up to ten participants in the same audio chat);
technical problems with a firewall has stopped us from this, though

• The cvs version control and Bugzilla error database also facilitate
working in several locations

Documentation

In our experience, a systematic approach to documentation is required when
the project engages only one worker, and it is indispensable when the number of
workers grows beyond two. Working on the only Sámi language technology
project in the world, we acknowledge that all future work will take our work as a
starting point. We thus work in a hundred-years perspective, and write
documentation so that people following us will be able to read what we have
done.

We document:
• The external tools we use (with links to the documentation provided

by the manufacturer)
• The infrastructure of our project
• Our source files: the linguistic decisions we have made,

In an initial phase, we wrote the documentation in html, and it was available
only internally on the project machines. Now, we write the documentation in
xml, and convert it to html via the xml publishing framework Forrest, cf
http://forrest.apache.org/. Documentation can be published in many ways, but
it is our experience that it is convenient to read the documentation in a
hypertext format such as html. As the documentation has grown we also use a
search engine to find what we have written on a given topic, which Forrest
provides.

The internal documentation of our project is open for inspection, at the web
site http://divvun.no/ (the proofing tools project) as well as
http://giellatekno.uit.no (the academic disambiguator project). The technical
documentation is written in English, and it can be found under the tab
Teknihkalaš dok. By publishing the documentation we make it easy to explain to
others what we do, and we hope that it will inspire others, and perhaps give us
some constructive feedback as well. The only possible drawback by this openness
is that it exposes our weaknesses to the whole world. So far, we have not noticed
any negative effects in this regard.

Costs

Except for the computers themselves and the operating system and
applications that come with them, we have mostly used free or open-source
software for all our tasks. In the few cases where we have paid for software,
there are free or open-source alternatives. The notable exception is the set of
compilers for morphophonological automata. For analysing running text and
generating stray forms, the Xerox tools can be used in the versions found in
Beesley and Karttunen 2003. For our academic project, these tools have proven
good enough, but in order to generate larger paradigms, the commercial version
of the tools is needed.

As for the computers, the only really demanding task is compiling the
transducers. If one is willing to wait a few moments more, any recent computer
can do fine. Macs turned out to be a good choice for our projects, and the
cheapest Mac can be bought for roughly 500 USD/EUR. One good investment,
though, is more RAM, preferably nothing less than 1 GB.

Summary

When doing language technology for minority languages, we are constantly
faced with the fact that there are few people working with each language, and
that different language projects set off in different directions, often due to
coincidences. Our answer to this challenge is to share both our experiences and
our infrastructure with others. By doing this, we hope that people will borrow
from us and comment upon what we do and how we do it. We also look forward
have a look at other solutions, and to borrowing improvements back.

References
(
Beesley, Kenneth R. and Lauri Karttunen 2003: Finite State Morphology.

Stanford: CSLI Publications. (cf. http://www.fsmbook.com/)
Bick, Eckhard 2000: The Parsing System “Palavras”. Automatic Grammatical

Analysis of Portuguese in a Constraint Grammar Framework. Dr.Phil. Thesis,
University of Århus

Brill, Eric, 1992: A Simple Rule-based Part of Speech Tagger. Proceedings of
the Third Conference on Applied Natural Language Processing, ACL, Trento,
Italy, 1992

Chanod and Tapanainen, 1994: Tagging French - comparing a statistical and a
constraint-based method. Seventh Conference of the European Chapter of the
Association for Computational Linguistics 149-156.

Jelinek, Frederick 2004. Some of my best friends are linguists. LREC 2004.
http://www.lrec-conf.org/lrec2004/doc/jelinek.pdf

Karlsson, Fred 1990: Constraint Grammar as a Framework For Parsing Running
Text. Hans Karlgren, editor, Papers presented to the 13th International
Conference on Computational Linguistics, volume 3, pages 168–173, Helsinki,
Finland, August. ICCL, Yliopistopaino, Helsinki.

Lauri Karttunen, Ronald M. Kaplan, and Annie Zaenen. 1992. Two-level
morphology with composition. In COLING'92, pages 141-148, Nantes, France,
August 23-28.

Koskenniemi, Kimmo 1983: Two-level Morphology: A General Computational
Model for Word-form Production and Generation. Publications of the Department
of General Linguistics, University of Helsinki.

Samuelsson, Christer and Atro Voutilainen. 1997: Comparing a linguistic and a
stochastic tagger. 35th Annual Meeting of the Association for Computational
Linguistics, 1997.

Voutilainen, Atro, Juha Heikkilä and Arto Anttila 1992: Constraint Grammar of
English, A performance-Oriented Introduction, Publication No. 21, Department
of General Linguistics, University of Helsinki,

