
————— How to build a speller: —————

1. collect word list from corpus
2. build a lexicon & morphology
3. make an error model
4. choose speller type:

– Microsoft Office
– Linux/Unix (aspell, hunspell,
etc)

5. build a speller engine
6. integrate into applications
7. test the coverage
8. test the error model
9. test the speller engine
10. test the application

integration

Portable language technology
The Giellatekno/Divvun (GT) infrastructure:

Individual
languages

GNU
Autotools +
build
tools

Templates
• infrastruct.
• language

group
resources

GT Core
• common scripts
• shared filters
• document

schemas

Our solution:
• open infrastructure
• open source tools and language source files
• rule-based tools
• separation of concerns:

 • linguistic data and resources vs.
 • infrastructure and required tools

⇒ plug in a new language and get the tools for free

How to make language
technology available?

1. 7000 languages, 2200 with standard orthography
2. 150 languages with basic localisation support
3. a handful of languages with good language tech

Technical details:
Bring best common practices from software engineering to computational linguistics:
1. Code re-use by separation of common parts and language specifics: a) build rules are

common for all languages; b) lexical data, linguistic rules specific for each language; c)
sharing data is possible, via a scripted template system that can merge or replace data

2. Proper use of GNU standard Autotools[1] suite for easy building, distribution and
deployment: Standard build by `./configure && make install`

3. Standard form obligatory commenting of code for automatic documentation and testing
(cf. literate programming, python's doccomments[2] and doctest[3], etc.)

4. Maintainability is achieved through standard coding style, automatic testing, and open
source style project maintenance: Automatic test suite by `make check`

5. Distribution and deployment is achieved by autotools standards: a) Installation by `make
install` (with `DESTDIR` support etc.); b) Automatically distributable language
packages by `make dist`

• Morphologically complex languages require state-of-the-art tools to handle morphology
and syntax, e.g. Xerox fst/hfst tools, Constraint Grammar tools, others

• Maintainability with different tools and syntaxes requires rigorous following of coding
style, commenting and making examples for test cases

• Autotools setup ties together different tool sets with completely different modes of
operation by neatly built simple rules and extensive test phase

• Code commenting practices ensure code suites are up-to-date with rules

URLS:
[1]: http://en.wikipedia.org/wiki/GNU_build_system
[2]: http://www.python.org/dev/peps/pep-0257/
[3]: http://docs.python.org/3.3/library/doctest.html

The infrastructure consists of 5 components
1. A core component of common scripts, filters, ...
2. A set of templates for adding new languages
3. One file set for each individual language
4. Autotools to configure builds and support portability
5. Tools to compile the individual components

Building an Open-Source Development Infrastructure for Language Technology Projects
Sjur Moshagen°, Tommi Pirinen*, Trond Trosterud‡; Divvun° (divvun.no), Giellatekno‡ (giellatekno.uit.no), University of Tromsø°‡, University of Helsinki*

NoDaLiDa Conference, Oslo, May 24th, 2013

Automated testing and documentation extraction
We use the support for automated testing and documentation
building built into Autotools, to automatically run a set of tests and
generate documentation for ourselves and for others.

Source code and documentation:
Source: svn co https://victorio.uit.no/langtech/trunk
Documentation: http://divvun.no/doc/infra/GettingStarted.html

?
Linguistic
resources

Linguistic
source
code

HTML
documen-

tation

$ make
 ⇓$ make check

 ⇓
PASS
FAIL
======================
4 of 7 tests failed
(2 tests were not run)
Please report to bugs@
======================

1)edit your source file(s),
2)then:
 $ make
 $ sudo make install
3)open LibreOffice, and see your changes in the speller!

The tools we produce:
• morphological analysers/generators, parsers
• spell checkers and hyphenators
• electronic dictionaries with morphology
• speech synthesis (new, not yet finished)
• ICALL tools with linguistic analysis

Most languages have rich morphology and a paucity of texts Cf. map showing
number of cases, ranging from white = 0 to black = 10 or more. The white
spots in Africa and America represent languages with rich verbal inflection
(and in Africa gender classes), whereas white spots in the Pacific represent
languages with less morphology (Source: wals.info, map 49A).

make,
sed, awk,
perl, hfst,
autoconf

The red-coloured areas are automated in our infrastructure,
partly as a direct result of the way it is built, and partly by
leveraging development work done by other groups, mainly
Voikko[4] and Hfst[5]. What remains is purely linguistic
work.

The linguistic nature of the work is further emphasised by
our focus on reuse and morphologic (and syntactic) analysis
– the lexicon and morphology are directly usable for both
morphological analysis and generation. This property of the
infrastructure and the tools we build are further utilized in
the automated testing, to ensure that all and only the
expected word forms are accepted or generated.

URL's:
[4]: http://voikko.sourceforge.net
[5]: http://hfst.sourceforge.net

Make your own speller (try it here!)

Example spellchecker: Faroese.
The first error is a false alarm,
the second one is not.

Some of our transducers, their size and performance. Coverage tests against Wikipedia or similar
corpora (~100000 wds), and HFST and Xerox show compilation time. The variation is dependent

 upon coding style: Finnish is made with parallel affixes instead of morphophonological rules.
Greenlandic encodes suffix strings as separate "words", to make a spellchecker, this gives
a large FST. For the other FSTs affix size reflects morphological complexity and coverage.

Language
technology

for the
languages of
the world!

