
Language technology for endangered languages: Sámi as a

case study

Trond Trosterud

Faculty of the humanities

University of Tromsø

October 16, 2006

Contents

1 Introduction

Seen from a purely computational point of view, all languages pose the same challenges for com-
putational linguists, and there is no reason to treat endangered and non-endangered languages
di�erently. When it comes to doing language technology in practice, the situation is di�erent.
There is no economical demand to make language technology solutions for more than a handful
of languages. For most languages the basic tools for making language technology applications
are not readily available: there are not large amounts of texts available in electronic format, also
reference grammars may be incomplete. On the positive side, we need not repeat costly mistakes
made by the lg tech pioneers. Projects starting today may build clean, modern systems.

Without well-developed language technology resources, no language will in the future be able
to:

function as an administrative language. (Text must be proofread, di�erent types of schemes
and �ll-in forms must be generated, people will need summaries and abstracts, all this will
be done automatically, with the help of language technology tools.)

function in a bilingual administration (multilingual versions of the same text will be gen-
erated by means of machine translation, consistent use of multilingual terminology will be
checked automatically)

be stored in digital archives (Source engines will rely upon language technology in order to
classify documents and information, and in order to �nd stored text. We would also like to
search for content, independent of what language the document is written in)

When witnessing the bene�ts human-machine interaction may give, people will �nd very strong
reasons for preferring English and other majority languages to languages where no language tech-
nology is available. After all, why store a document written in a language which makes it impossible
to retrieve?

In short, if we do not capitalise upon language technology for minority languages, their users
will soon feel themselves in the same situation as the left-handed witnessing a right-handed person
using a pair of scissors. During the last decade, great progress has been made within the area
of semantic nets and word-sense disambiguation. This work still hasn't emerged on the average
user's desktop, but it will, and unless we don't act, it will emerge for the large languages only. As
commercial language technology products become better, and as public administration relies more
heavily upon language technology, the di�erence between languages with and languages without
these resources will become strikingly clear.

1



In addition to the practical concerns involved, we linguists have our own axe to grind here:
A well-developed language technology will make it possible to make the language in question an
object of study in another and more e�cient way than without it.

This is actually a very important point: For most of the languages of the world, there is
no commercial incitement to do the ground work needed for language technology applications.
What is left is then academic research institutions. The professional linguist sees the writing of
comprehensive reference grammars for as many languages as possible, ultimately for every language
of the world, as a goal in itself.

Computers manipulate bits and bytes. Whenever the byte manipulation takes into account
what language it manipulates, we deal with language technology. Here, I will concentrate upon
text-based language technology. I will have a look at the localisation, the basic infrastructure
for writing a language on computers, and I will look at basic grammatical analysis tools, such as
morphological parsers and disambiguators. I will also brie�y look into semantical and multilingual
language tools, as well as certain subcomponents of text-to-speech programs.

In this article, I will argue that the availability of language technology tools will be of utmost
importance in order to be able to use a language as administrative language. I will also present
some prerequisites for language technology work, and some paths for the work ahead.

The article is structured as follows: First comes a discussion of di�erent types of text-based
language technology. Thereafter we look at some case studies, above all Northern Sámi, but also
other languages. The focus will be upon localisation work, and upon how grammar-based parser
construction can be used as a basis for reference work. Finally comes a conclusion.

2 Di�erent types of text-based language technology

Language technology development is paid for partly by the industry, and partly in publicly funded
research institutions. As a matter of fact, many language technology products for the commercially
most interesting languages are developed by public funding, in academic research institutions.
Much of the work done for English is even paid for by governments in non-anglophone countries.

2.1 Localisation

By localisation, we mean everything that makes the computer aware of what language the user is
using, and what country he or she lives in: character sets, keyboard layout, sorting order, day-and-
time format, currency symbol, and many other things. The language-independent infrastructure is
provided by international standard organisations, and tools for making language-speci�c versions
are in most cases available.

The 1990ies witnessed the largest revolution in language typesetting since Gutenberg: All the
letters of all the languages of the world, living and dead, were made unambiguously available on
every computer, by being included in the character set standard ISO/IEC 10648, or Unicode. If
any letter is missing, it will be included in Unicode.

At present, there are three major operative systems competing for the PC market: Windows,
Macintosh and Linux. Note that, from the point of view of minority languages, Linux occupies
a special position, as it is made on a volunteer basis. If someone needs a keyboard layout for a
hitherto unsupported language, they can just go ahead and make the layout, and then include
it in the Linux desktop distribution, so that it becomes available to everyone. For Windows
and Macintosh, the situation is di�erent: These are closed operating systems, and the adding of
language resources must be approved by Microsoft and Apple, respectively.

2.2 Morphological parser and disambiguator

Unfortunately, so far, most language technology applications have been made for commercially in-
teresting languages. This means that, although Unicode is the standard on web browsers, language
technology source code is, as a rule, written in some 8-bit codepage, or even in 7-bit ASCII.

2



Many language technology applications for English have been done with a minimum amount of
grammatical analysis. Spell checkers have been made base upon a compressed list of all wordforms
found in a large corpus of proofread running text.

Two factors have contributed to the relative success of this approach: First, there are very
many texts electronically available for English. Second, English has a very poor morphological
structure, where each lexeme is represented by at most a handful of wordforms, with no forms
signi�cantly less frequent than the others. Most of the languages of the world have a more elaborate
word structure than English, with large paradigms for each lexeme, containing tens or hundreds
of wordforms. In these languages, some of the paradigm members have a very low text frequency.
Statistical approaches work best for languages with huge amounts of text electronically available,
and a minimal amount of morphology. Grammatical analysers, will analyse and generate every
theoretically possible in�ection form. If they are not properly restricted, they will, however, run
the risk of generating nonexistent forms, this risk is eliminated in the list-based approach.

In order to illuminate thedistinction between these two approaches, I conducted an investiga-
tion on verbs in English, Danish, Sámi and Finnish. The starting point was the verbs in �gure 1,
a high- and a mid-frequency verb.

Figure 1: Check of coverage for high- and mid-frequency verb

Focusing �rst on English and Danish, we get the following pattern. Figure 2 shows how many
times each word form of the four di�erent verbs are found in the New Testament. Word forms not
found are marked with a grey shade.

Figure 2: Attested verbforms in the Danish and English New Testament

The English -s forms serves and says are missing because this version of the New Testament
(King James' Bible) is from 1611, and it contains no -s forms. Looking for says and serves in an
arbitrary corpus of 85000 words , gives 4 says and 2 serves. Except for the missing imperative and
perfect participle of the Danish mid-frequency verb, all in�ected forms are thus covered.

Let us then have a look at Sámi. A North Sámi verb has 45 core �nite forms (+ some marginal
ones), and a dozen or so in�nite forms. In addition come derivational forms, passive, causative,
inchoative and others, each derivational process will give rise to a new set of in�ected forms. Here
I will concentrate only upon the core forms. The wordforms of dadjat 'to say' found in the NT,
are shown in �gure 3

As can be seen from Table 6, The New Testament contains only 19 distinct forms of dadjat, or
39 % of the core forms. The coverage is best for Indicative Present, but also this subparadigm is
incomplete.

Northern Sámi bálvalit 'to serve', in the NT, is found in �gure 4. For bálvalit, only 12 distinct
forms are found in The New Testament, or 25 % of the actual word forms.

3



Figure 3: Northern Sámi dadjat 'to say', in the NT

Figure 4: Northern Sámi bálvalit 'to serve', in the NT

4



149000 words is a small corpus. In order to enlarge it, we must switch language. Finnish has
a verbal morphology quote similar to the Sámi� and it is represented by approcimately 3.5 billion
words on the Internet (october 2004). The pendant to bálvalit is palvella, a verb among the 1000
most common Finnish words. Looking at the representation of its �nite forms on the Internet, we
�nd the pattern in �gure 5. It is well represented on the net, as all its �nite forms are attested
(although to a varying degree).

Figure 5: Finnish palvella 'to serve' on the Internet

palvella is still a common verb, and on the net it is typically found in contexts like �our shop
is open (and serves its customers) between 9 and 5). If we instead take a rare verb, we get a more
meagre picture. Let us consider vapisuttaa `make shake, shiver' a verb among the 12000 most
common Finnish words, cf. �gure 6.

Figure 6: Finnish vapisuttaa `make shake, shiver', on the Internet

As we can see from �gure 6, even in a 3.5 billion word corpus, we are not able to �ll more than
8 of 29 forms, or 27 %. And this is the core �nite paradigm. If we were to take the full Finnish
verb paradigm into account (which is 852 �nite forms and in�nitives, and 11000 participles ), the
percentage obviously would drop further.

A more reliable way of covering all the in�ected form is a morphological transducer. A simple
transducer is shown in �gure 7. Combining a dictionary with declension class info plus a mor-
phological transducer will give a grammatical analyser, capable of analysing running text. Such
transducers can be written within a year or so, dependent upon the complexity of the language in
question. One might also use machine learning to construct transducers, as recently investigated
by [?], but that is not the topic of this article.

A possible counter argument to the use of transducers may be that the paradigms of verbs like
vapisuttaa (and indeed of all other verbs) may be generated, either by a transducer, or by other
morphological means, and then imported into some list-based language technology software. This
is indeed possible, and there is nothing wrong with that, except for the fact that this workaround
presupposes the transducer that it set out to avoid. As soon as we have a transducer for the
language in question, we are able to choose, though. Either we can generate a fullform list as
input to list-based applications, or we can use the transducer as such, and analyse or generate
word-forms on the �y.

In order to make a morphological transducer, the following resources are needed:

1. A dictionary in electronic format, preferably with information on stem- and declension
classes.

5



Figure 7: A simple transducer for some English nouns

2. A set of morphophonological, or rather morphographemical rules, in order to be able to
generalise over regular su�x alternations

3. An ordered list of closed parts of speech and of exceptional members of the open parts of
speech

4. A good reference grammar, from which it is possible to see the regular and the irregular
patterns.

2.3 Information retrieval

Good information retrieval from an indexed digital archive rests upon two foundations: a mor-
phological analysator, and a semantic analysis of the vocabulary of the word in question. The
morphological analysator is needed in order to group the word forms under the correct lexemes.
When looking for Icelandic fjell we want hits also for Ritskrá um fjöll, thus our analyser must be
able to link the wordform fjöll to the lexeme fjell. For English, this is done with a process called
stemming. The procedure is as crude as it sounds: The �nal letter of an unknown wordform is
removed, until we get a known wordform. The handful of exceptions man - men, brother - brethren
is taken care of with a list. For most other languages, the morphology is too complex to revert to
such simple devices.

The search will also be more precise if the search clause can be disambiguated. The Norwegian
word-form lodde is for example ambiguous, it can denote a �sh (lkasdjhbioegvh), or it can mean
'to weld'. If the search is given in form of a clause, then a grammatical component can decide
whether the noun or the verb is intended, and restrict the search accordingly.

We face another challenge when we encounter real homonymy, such as between English river
bank and �nancial bank. Here, the search machine must �rst be aware of the homonymy in the
�rst place, and thereafter it must be able to �nd out which one the user has in mind. The �rst
task is being undertaken a.o. in the work within the WordNet project.

In order to have good information retrieval, we also need a variety of semantic resources. The
computer must know the di�erence between cases such as the the river bank and the �nance insti-
tution, and it must distinguish between the di�erent instances of Roma (city, Italy's government,
football team, ...). Nouns, bot common nouns and proper names, should receive a semantic clas-
si�cation, so that the analyser can know the di�erence between animate and non-animate nouns,
and between names of persons and names of cars. Such resources are already part of commercial
products, and their presence will be felt in the near future. When they are included in common
search engines people will see the e�ect of having a search engine that "understands what you
mean"

6



2.4 Multilingual language technology

Most language technology applications are made for one language only. On the other hand, the
one language technology that the customer is actually willing to pay for, is machine translation.

2.4.1 Intelligent dictionaries

By intelligent dictionaries, I mean dictionaries that are able to analyse its input. Thus, if I read
an Icelandic internet site and see the clause lksdfjng hilerjhbl erwjg hv, I would like to be able
to put the cursor on the wordform ksjdfng, and get the answer lksunlkweurhb. Such dictionaries
are already available, e.g. between English and German, but not between e.g. Norwegian and
Icelandic, or between Greenlandic and Danish.

2.4.2 Terminology management

By terminology management I mean the requirement, for a multilingual administration, or com-
pany, to ensure that the same term is always translated in the same way in all the relevant
documents. If, for example, the texts shall have legal status, the choice of word becomes impor-
tant.

A sentence-aligned parallel corpus of the translated texts, combined with a grammatical anal-
ysis of both text versions, will keep track of the terminology usage, and ensure that every time
term A is used in the source language, a corresponding term B is used in the target language.

2.4.3 Machine translation

Language technology started out right after World War II, with bright promises that within few
years, we would have working machine translation systems. In a famous report in 1968, the
ARPANET report, it was stated that all work poured into the �eld during the 20 years period
was in vain.

Today, the situation is far better. Between the commercially interesting languages, there are
several machine-translating systems available, and especially for closed domains (texts where we
know the topic) the results are quite good.

The Nordic countries now spend vast public resources on machine translation research. Un-
fortunately, all the e�ort is directed towards building systems that translate from the national
languages into English. As I see it, this means that the Nordic public administration is being
opened for English, so that it becomes possible to live in the Nordic countries without knowing
the national languages. In order to strengthen the national languages, we need machine transla-
tion systems in the opposite direction, so that we can get our children DVDs, our computer game
menus, and our EU information in our own languages.

For the minority languages the situation is even more critical. In Finland, the bilingual Finnish-
Swedish public sector will be upheld by the means of future machine translation between Finnish
and Swedish. When the politicians then notice that the translation costs to Sámi are tenfold, as
compared to the translation costs to Swedish, the desire to provide public information in Sámi
may be reconsidered and even abandoned.

Making full-�edged machine translation systems is a demanding task, but making translation-
assisting software is more manageable. It can be made on the top of an intelligent dictionary and
term database, and it will speed up the translation work.

2.5 Speech technology

Making good speech-to-text systems is an ambiguous project. It is worth noting, however, that
text-to-speech systems are not that hard to make. The reason for this is that one of the two key
components in text-to-speech systems is an automaton that translates the ordinary orthography
to some tailored phonetic alphabet. The task of making such an automaton is like formalising
the chapter on pronunciation rules in your favourite reference grammar (only this time, all the

7



exceptions must be listed, and not only shortly exempli�ed). If the resulting string is connected
to a speech system for another language, than you get a machine that speaks your language, but
in a foreign accent.

3 Some case studies

I will have a look �rst at localisation and then at grammatical transducers. The main focus will
be on work for Sámi, but I will contrast Sámi with Yoruba wrt. localisation, and Sámi with
Greenlandic wrt. grammatical transducers.

3.1 Localisation

3.1.1 The Sámi languages

There are 6 Sámi written languages. The largest is Northern Sámi, with perhaps 18000 speakers,
whereas the remaining 5 languages have less than thousand speakers. Here I will give you a short
overview over the status quo of Sámi language technology, and of what it has taken to bring us
there.

Sámi There are 6 Sámi written languages, as seen in the overview in table 1.

Lg Speakers Alph extra letters
Southern < 500 latin 1
Lule < 1000 latin 2
Northern 16600 latin 7
Inari < 300 latin 4
Skolt < 300 latin 12
Kildin < 500 cyrillic 13

Table 1: Sámi literary languages

As an illustration, the alphabets of Skolt and Kildin Sámi are given in �gures 8 and 9, respec-
tively

Figure 8: Skolt Sámi alphabet

Figure 9: Kildin Sámi alphabet

8



3.1.2 Sámi Localisation � a success story

The biggest achievement for Sámi localisation is the fact that Northern Sámi keyboard layout
is included, out of the box, in three di�erent national settings, no matter where you buy your
computer, from the OS versions Linux KDE 3.0, Mac OS 10.3, Win XP SP2 and higher. This
means that we may safely assume that every user will be able to type Sámi words, as soon as the
relevant keyboard is chosen. This achievement is a result of a decade of hard work, including grass-
root conferences among language users in order to arrive at a consensus among earlier competing
layouts, as well as standardisation work in the relevant standardisation bodies (one of them, CEN
TC304 had its secretariat here in Reykjavik), lobbying work and explicit pressure from our state
administrations upon the OS vendors, and volunteer work within the Linux movement. The result
is that basic Sámi localisation is supported by all the OS's, whereas languages with more than
thousand times as many speakers are not.

There are keyboards and graphical user interfaces for some languages in the major operative
systems already. Table 2 gives an overview of the situation in april 2005 (the dash indicates that
the �gures were not available to the author).

OS keyboard GUI
Windows XP 51 33
Mac OS X 42 -
Linux KDE - 88

Table 2: Keyboard layouts and graphical user interface for the major operative systems

We may have a closer look at the largest languages without localisation support, and the
smallest languages with support, in table 3 (language rank and number of speakers are from the
Ethnologue).

12 largest lgs with limited support 12 smallest lgs with basic support or more
Rank Speakers Name Country Rank Speakers Name Country

26 41.0 Bhojpuri India 2108 0.014 Inuktitut Canada
33 30.0 Siraki Pakistan 1971 0.017 North. Sámi Nordic
35 24.0 Maithili India 1752 0.022 Cherokee USA
37 23.0 Oriya India 1344 0.047 Greenlandic Greenland
39 22.0 Burmese Myanmar 1343 0.047 Faroese Denmark
40 22.0 Hausa Nigeria 1304 0.050 Maori NZ
44 20.3 Awadhi India 991 0.940 Gaelic Scotland
47 20.0 Yoruba Nigeria 601 0.250 Icelandic Iceland
51 17.0 Sindhi Pakistan 517 0.330 Maltese Malta
53 16.0 Nepali Nepal 407 0.500 Breton France
55 15.0 Amharic Ethiopia 370 0.580 Welsh UK
59 13.7 Assamese India 292 0.910 Basque Spain
60 13.0 Haryanvi India 130 4.000 Georgian Georgia

Table 3: The 13 largest languages without � and the 13 smallest languages with � basic localisation
support in at least one of the major operating systems

The largest languages with marginal or no IT support (approximatively 6400 lgs), are typically
African languages or Indian languages other than the 22 Indian o�cial state lgs, or they are
languages without o�cial status in an independent country, especially in former British and French
colonies. Languages with IT support, on the other hand (the remaining 100 lgs), are languages
with o�cial status in an independent country without a colonial past, and rich and monolingual
speakers, they are (most of) the o�cial state languages of India, or they are minority languages

9



with a strong government backing them up (Western Europe, Canada, New Zealand). It is this
latter group we see represented at the right hand side of table 3.

3.1.3 Future perspectives for massive multilingual localisation

Table 3 will very soon be outdated, as there is much work going on within localisation around
the world, especially in Africa. Minority language activists typically turn to the open source
movement, where they can localise whatever language they want. Microsoft and Apple are more
restrictive, and only localise when they see a reason for it. Looking for a moment at the desktop
war, and focusing upon Microsoft vs. Linux, I think it can be characterised as in table ??.

Microsoft... Linux...
has a dominant market pos comes for free
has more 3-party software providers does not crash
has better plug-and-play is open source
has far better language can be localised to
technology (spell checkers any lg with speakers who
& grammar checkers) care to do the job

Table 4: The Microsoft vs. Linux desktop war

Both parties will probably try to match the competitor. I expect Microsoft to want to extend
both the localisation and the spell checkers to more languages (reacting to critique from the open
source community). I also expect them to choose a statistically based approach to the spell
checkers, although they will chose grammatically-based ones when they are readily available (as
for the Nordic languages).

I expect the Linux community to take the lg tech challenge more seriously. The problem with
this is that language technology cannot be done "the Linux way" , as global volunteer hacking
projects. Language technology projects need teams of several programmers, lexicographers, philol-
ogists and computational and theoretical linguists, working together for years. At the moment,
only Microsoft has both the resources and the will to �nance such projects. Government-funded
language research institutions certainly have such resources, but at least so far, they have been
reluctant to pay for the development of open-source products. The typical situation is then that
the basic work is being done by public funding (making of dictionaries and reference grammars),
and then Microsoft comes in, buys the right to use the resources, and pays the �nal 2-5 % it costs
to turn these resources into authoring tool products.

On the other hand, we see that more basic tools become open source. Examples include the
Stuttgart sfst �nite transducer, and the Odense vislcg disambiguator. Also, publically funded
dictionary projects now start to make their lexica accessible to open source projects. In order to
see authoring tools on all desktops, this tendency should be strengthened.

The point here is not to boast of how lucky Sámi users are, but to show this as an example of
how to proceed. A language for which this issue is being hotly debated at the moment is Yoruba.
With 20 million speakers, Yoruba is far from a minority language. When it comes to keyboard
layout, there is no consensus, and many even hold the position that Yoruba should sacri�ce its
orthography due to the computer problems. This last position I will simply dismiss as being
erroneous. After the establishment of the Unicode standard, the only factor blocking users from
implementing their orthographies as they should be, is ignorance.

3.1.4 How were the Sámi results achieved?

After an early period of ad hoc solutions, di�ering from operating system to operating system
and from country to country, at the wake of e-mail and the internet in the mid-nineties, the
Sámis found themselves hampered by a large number of con�icting standards, both with regard
to character encoding and to keyboard layouts. In order to meet this challenge, the Norwegian

10



Parliament in 1996 appointed a committee for computer standardisation1. The work on character
set standardisation was only intended as an interlude before the arrival of Unicode, and it will not
be reported here, instead we will focus upon the work on keyboard standardisation.

Put in a list fashion, the work may be summarised as follows.

There were many keyboard layouts available We collected all of them, and compared them
to each other. Letters that had the same positions in all former keyboards kept their positions

The keyboards had di�erent major-language keyboards as a starting point We decided
to make the keyboards as similar as possible to the majority-language keyboards in the
country where they were used. Thus, Finnish Sámis got a keyboard based upon the Finnish
keyboard, Swedish Sámis one based upon the Swedish keyboard, etc. Thus, the users could
�nd symbols like the @, the �, etc. in the positions they would assume them to be placed.

The keyboards had used di�erent keys for the 7 Sámi letters We had to decide which keys
to use for Sámi letters, and which keys to keep untouched. As part of a conservative strategy,
we kept the possibility of writing Sámi and the majority language with the same keyboard (æ,
ø, å were kept), thereby facilitating typing place- and person names, whereas the non-Nordic
letters q, w, x were sacri�ced)

We had to decide how to place the Sámi letters We investigated the text frequency of the
relevant letters in a large corpus of Sámi texts. The most common letters were given more
prominent positions.

The replaced letters had to be put somewhere As a rule, we put the replaced letters one
level up. So, when the key W gives ², then, in order to get w, you press option-w, etc..

Keyboard layouts should be tested by skilled typists For Northern Sámi, we were not able
to carry out systematic testing, this clearly was a weakness of the work.

The (pre-Unicode) version of the Northern Sámi keyboard for Macintosh in Norway, arrived
at as aresult of this work, is shown in �gure ??.

The Skolt Sámi keyboard was a greater challenge, as there were more letters to include. Here,
the standardisation work was easier, as there was already a layout for MS-DOS available, and no
competing layouts. The standardisation work was then reduced to rearrange the symbols that had
been replaced, and to include the possibility of typing other Sámi letters. Cf. �gure ??.

When a language is written in di�erent countries, such as Fulfulde in both former French and
English colonies, one uniform keyboard layout is not a realistic goal. Placing the Fulfulde letters
on the same positions in Anglo-Fulfulde and Franco-Fulfulde keyboards, should get high priority,
but after that, the di�erent ex-colonies should pay attention to di�erent o�cial languages.

If it turns out that consensus is impossible (Spanish is for example represented with two
di�erent keyboard layouts), one should bear in mind that it is no catastrophe. How you type in
your text is irrelevant to me as long as I can read the result, i.e. as long as you encode your letters
in a way that I can recognise. The bonus of a uni�ed keyboard standard is that it makes it easier
to teach typing skills, and to change from one computer environment to another.

A further key localisation application is a sorting algorithm. Language communities have
di�erent conventions for sorting their letters, and the computer should be made aware of them. In
addition to sorting the main letters of the indigenous alphabet, a sorting algorithm should have a
fallback for treating non-native letters. The sorting algorithm made for Northern Sámi ful�l these
criteria 2, this (or indeed any) sorting algorithm has only been installed on the Linux platform,
though, although there is work underway to implement it on Windows as well.

1The committe members were Audun Lona (leader), Inger Marie Gaup Eira, Edmund Grønmo, Hannu Kangas-
niemi, Peter Sarri and Trond Trosterud.

2Cf. the sorting string at http://www.hum.uit.no/a/trond/sorting.html

11



Figure 10: Northern Sámi keyboard for Macintosh, Norway

12



Figure 11: Skolt Sámi keyboard for Macintosh

13



3.2 Yoruba localisation

As an illustration of a language that has not reached the consensus described above, let us have
a look at Yoruba. Yoruba has 19.3 million speakers, and it has o�cial status in Nigeria. It is a
tone language, and tone is marked in the latin-based orthography. As a result of this, it has many
letters not found in the a-z alphabet, namely á, à, é, è, e., e.�, e.�, í, ì, ó, ò, o. , o.�, o.�, s., ú, ù .

Yoruba has no o�cial support on any OS, but there is work in progress for making the Linux
KDE platform available in Yoruba. At the moment, there is a discussion on removing the diacritics
from the orthography, as they cause so much trouble for the use of Yoruba in computers.

My view on that issue is that the computer should adjust to humans, and not vice versa.
Orthographies and keyboard layouts should be designed according to linguistic and ergonomic
principles. We linguists invented these diacritic signs, and we should engage in �nding solutions.

It should also be mentioned that several Yoruba speakers are optimistic with respect to the
situation, e.g. Samuel Olamijulo, here quoted from a letter to the A12n-forum on localisation for
African languages, where he points at one of the many keyboard layouts available for Yoruba.

Typing ALL Yoruba Letters, undermarks and tonal signs included, is now easy with
practice, using free Arial Unicode MS font and ABD Yoruba Keyboard . Yoruba Desk-
top Publishing is making tremendous progress with inputs from many good contribu-
tors all over the world. One important persisting user headache is in communication
accross e-mail , yahoogroups, other web forums, websites and other Internet applica-
tions even when Arial Unicode MS or other Unicode Compatible fonts are used in the
creation of the message. Arial Unicode MS font in MS Word 2003 and ABD Yoruba
Keyboard are available for free.

As can be seen from the quote, Yoruba now �nds itself in the same position as Sámi faced back
in 1995: There are several layouts available, there is work going on in di�erent places, but there
is no consensus, and indeed no o�cial support.

3.3 Northern Sámi language technology

We now turn to Northern Sámi language technology. There is work going on within the following
areas:

• Basic tools: Parser and disambiguator

• Spell checker

• Pedagogical programs

• Terminological database

• Encoded mono- and bilingual corpora

3.3.1 Parser and disambiguator

Northern Sámi is an Eurasian Turkish-type language (adverbial cases, morphological su�xation,
no declension classes), but with heavy in�uence from the neighbouring Germanic languages, such
as non-segmental in�ectional processes such as stem-internal diphthong and consonant alternation.
Each lexeme can have several tens of in�ected forms, verbs and adjectives have over 100 in�ected
forms. The stem modulations make stemming inappropriate as a method for information retrieval.

Let us have a look at the sentence Áh££i lea oastán munnje divrras sabehiid 'Father has bought
me an expensive pair of skis'. Analysed by the morphological parser being made at the University
of Tromsø (http://giellatekno.uit.no), it comes out as seen in �gure m-alle.

Most of these morphological analyses are wrong in this particular context. Our disambiguator
removes the inappropriate ones (and adds grammatical function), as can be seen in �gure ??.

14



Figure 12: Morphological analysis of the Northern Sámi sentence Áh££i lea oastán munnje divrras
sabehiid 'Father has bought me an expensive pair of skis'

Figure 13: Disambiguated version of the Northern Sámi sentence Áh££i lea oastán munnje divrras
sabehiid 'Father has bought me an expensive pair of skis'

15



These tools are still under construction, but test results show that the program is able to
disambiguate unknown text with a precision of 94% (morphology) and 93% (syntax), with a recall
of 99%, and an accuracy of 1.056.

3.3.2 Applications

The parser and disambiguator for Sámi are being put to use in several applications:

Spell checker The sámi parliament has issued a 3-year project geared towards making a spell-
checker for two of the Sámi languages. Excluding the time spent on the basic parser tech-
nology, the spell-checker is estimated to take 14 man-years, including work on the Sámi
standard.

Hyphenator We will have a morphologically based hyphenator, that incorporates a morpholog-
ical analyis done by the Sámi analyser (in order to �nd the word boundary), with a set of
phonotactic rules in order to �nd possible hyphen insertion points. In cases of con�ict, the
word boundary wins.

Pedagogical programs Utilising work done at the University of Southern Denmark, we are
using the parser as a basis for making interactive pedagogical programs.

The input format to the pedagogical programs, for the same sentence as was shown above, cah
be seen in �gure ??.

S:n('áh££i',sg,nom) Áh££i
P:g
=D:v('leat',ind,pr,3sg) lea
=H:v('oastit',pcp2) oastán
A:pron('mun',<pers>,1sg,ill) munnje
Od:g
=D:adj('divrras',attr) divrras
=H:n('sabet',pl,acc) sabehiid

Figure 14: The Northern Sámi sentence translated into underlying ped-format

The graphical outcome of the analysis is shown in �gure ??. The sentence may also be dis-
played, and interactively analysed, with a set of 200 other Sámi sentences, at http://beta.visl.sdu.dk/visl/smi/.

Figure 15: The visl graphical version of the Northern Sámi sentence

16



3.3.3 Future plans

We plan to port our solutions for Northern Sámi to all the other Såmi languages as well, and
eventually to other Uralic languages.

When conducting language technology projects, large part of the planning costs go into setting
up an infrastructure. Commercial companies naturally keep this infrastructure to themselves, as
this is part of their competitive advantage, as compared to newcomers in the �eld. In Tromsø,
we plan to publish our infrastructure as part of an open-source how-to for language technology
projects. Even though the core tools for our morphological parsers are not open-source (twolc,
lexc, xfst are part of the Xerox toolbox, see http://www.fsmbook.com, they are freely available for
non-pro�t project. People wanting a full open-source platform may turn to alternatives, such as the
Stuttgart �nite state tool sfst (http://www.ims.uni-stuttgart.de/projekte/gramotron/SOFTWARE/SFST.html).

3.4 Greenlandic

The most obvious language to build a morphological automaton for is Greenlandic, a polysynthetic
language that combines an average morphological structure (7 cases, 6 persons, 2 numbers) with
an extensive number of derivational a�xes.

At present, a list-based spell-checker for Greenlandic is under construction. So far, the results
have not been too encouraging. Even with an exceptionally high number of wordforms (350000),
the spell-checker only recognises approximately 40 % of the words in running text, i.e., it has a
precision of 0.4, which is so bad as to leave it totally useless.

[?] were able to make a good a grammatically-based transducer and disambiguator for French
in a couple of man-months. Making a transducer for Greenlandic would very return better results
than the depressing 40 % of the list-based spell checker.

4 Co-ordinating documentation and language technology

There is no doubt minority languages will need language technology in order to function as literary
languages. Endangered languages, typically without a written standard, and with few speakers
left, are in a totally di�erent situation. What are the perspectives for co-ordinating documentation,
such as writing reference grammars and collecting corpora for endangered languages?

For university lingustics, languages with few speakers are as interesting as languages with
many speakers, as the grammatical intricacies are the same. Even more so: Languages where the
linguist in question may be a pioneer, or where his or her work will necessarily have lasting impact,
may even be more attractive than languages with an abundance of both speakers and practising
linguists. On the other hand side, the increasing commercialisation of academia may change this,
forcing linguists to work on commercially more interesting languages.

When languages are about to vanish, we want basic documentation:
It is not obvious that resources should be geared towards making transducers etc. but lexico-

graphical work should be conducted in a structured way if large corpora are available, they could
be annotated by a parser. A parser is also a handy tool for checking the validity of the rules of
the reference grammar.

5 Conclusion

Language technology solutions is both a sine qua non for minority language communities wanting
to use their language for administrative and literary purposes, and a necessary tool for reference
work. Linguists, programmers and language activists should co-operate on making these tools.

The work is time-consuming, but apart from the cost of computers to run your Linux distro
on (and in some cases scanners), the work on text-based language technology does not require
expensive equipment. Thge amount of work done will thus be dependent upon the possibilities of
�nding people being willing to do it.

17



I am optimistic on behalf of language technology for at least a noticeable part of the 6500
languages of the world. But I would like to see more of my colleague linguists to join in.

References

[CT95] Jean-Pierre Chanod and Pasi Tapanainen. Tagging french - comparing a statistical and
a constraint-based method, 1995.

[ONM00] Kemal O�azer, Sergei Nirenburg, and Marjorie McShane. Bootstrapping morphological
analyzers by combining human elicitation and machine learning. Computer Engineering
Technical Report, BU-CE-0003, 2000.

18


	Introduction
	Different types of text-based language technology
	Localisation
	Morphological parser and disambiguator
	Information retrieval
	Multilingual language technology
	Intelligent dictionaries
	Terminology management
	Machine translation

	Speech technology

	Some case studies
	Localisation
	The Sámi languages
	Sámi Localisation -- a success story



